INFOTEH-JAHORINA Vol. 7, Ref. E-I-3, p. 378-383, March 2008.

TEST METRIKA:PRAKTIČAN PRISTUP ZA PRAĆENJE&INTERPRETACIJU

TEST METRICS: A PRACTICAL APPROACH TO TRACKING & INTERPRETATION

Ljubomir Lazić

Univerzitet u Novom Pazaru, Fakultet Tegničkih Nauka, Vuka Karadžića bb, 36300 Novi Pazar, ljlazic@np.ac.yu
Sadržaj- U radu se diskutuje test metrika i mogućnost njene upotrebe u poboljšanju procesa razvoja softvera. Ako se pravilno upotrebi, test metrika može značajno da doprinese inicijativi unapređenja postojećeg procesa razvoja softvera. U radu se daje opis nekoliko konkretnih test metrika, postupak merenja i interpretacija efekata unapređenja procesa razvoja softvera koji svaka softverska kompanija može implementirati. Pored toga se daje opis nove metrike za procenu napora i troškova procesa testiranje softvera preko test tačaka - STP. STP metrikom se potpuno pokrivaju sve aktivnosti u procesu testiranja softvera bilo da spadaju u strategiju testiranja na principu crne ili bele kutije. Test tačke u procesu testiranja softvera spadaju u test metriku koja je jako korisna u fazi planiranja i proceni ukupnih napora softverskog projekta koju mogu koristiti kako test menadžeri tako i menadžeri kvaliteta i projekt menadžeri.
Abstract- This paper discusses software test metrics and their ability to show objective evidence necessary to make process improvements in a development organization. When used properly, test metrics assist in the improvement of the software development process by providing pragmatic, objective evidence of process change initiatives. This paper also describes several test metrics that can be implemented, a method for creating and interpreting the metrics, and illustrates one organization’s use of test metrics to prove the effectiveness of process changes. Besides, this paper proposes Software/System Test Point (STP), a new metric for estimating over all software testing process. STP covers so-called black-box testing; an estimate for the test activities, which precede scenarios (threads) testing (white-box testing included), will already have been included in the estimate produced by function point analysis. Software test point is a useful metric for test managers, which aids in precise estimation of project effort, addresses the interests of metric group, software managers of the software organization who are interested in estimating software test effort.
1. INTRODUCTION

As organizations strive to shorten the development time of their products while at the same time attempting to improve their quality, the need for practical, cost effective testing strategies and techniques is becoming more and more important [1,2,4]. These strategies and techniques must span the full range of the development process addressing unit and component testing, integration testing, system testing and acceptance testing. In addition, the strategies and techniques must be tailored to the product under development recognizing unique project characteristics and constraints such as reliability, safety, cost and schedule. Testing activities also provide a critical opportunity to capture metrics and defect information that can be utilized to improve both development and testing processes. Software testing is one activity that can provide visibility into product and process quality. Test metrics are among the "facts" that project managers can use to understand their current position and prioritise their activities, so that they can reduce the risk (or impact) of running out of time before the software is ready for release [4].

With metrics collection, timing is everything. Testers should start collecting metrics as soon as they get software that is stable enough to meaningfully run tests. If you are only testing (or collecting test metrics) near the end of the development lifecycle, then it is too late  you have lost the opportunity to use the information to make a difference.

Test metrics collection programs do not have to be extensive to be effective. We have identified six issues (see Table 1) of test metrics that we collect on our testing projects. These fall into two categories – problem report (PR) information and test information. Testing is often seen as a troublesome and uncontrollable process. As it is often performed, it takes too much time, costs too much, and does not contribute to product quality. However, with appropriate processes, it can be brought under control and can add significant value to the development process. Planning for testing on a software project is often challenging for program managers. Test progress is frequently unpredictable, and during software testing painful schedule and feature "surprises" typically occur. Software testing is often viewed as an obstacle - more as a problem and less as a vital step in the process. For this reason, testing is treated as a "black box" and addressed at the end of the schedule. While budget and time may be allocated for it, testing is not really managed in the same way as development.Typically, software development is measured in terms of overall progress in meeting functional and business goals. Software testing needs to be measured in similar terms to understand its true progress and make informed decisions. By considering testing dimensions other than cost and schedule, managers and other team members can better understand and optimize the testing process [3], in effect opening the black box and managing testing more effectively. In this way they can avoid costly and painful "surprises" late in the project. It is often said, “You cannot improve what you cannot measure.” In this article, we describe some basic software measurement principles and suggest some metrics that can help you understand and improve the way your organization operates i.e. Software Testing Metrics Framework (STMF) [5]. When used properly, test metrics assist in the improvement of the software development process by providing pragmatic, objective evidence of process change initiatives. This paper also describes several test metrics that can be implemented, a method for creating and interpreting the metrics, and illustrates one organization’s use of test metrics to prove the effectiveness of process changes.
2. DEFINITION

Metrics are defined as “standards of measurement” and have long been used in the IT industry to indicate a method of gauging the effectiveness and efficiency of a particular activity within a project. Test metrics exist in a variety of forms. The question is not whether we should use them, but rather, which ones should we use. Simpler is almost always better. For example, it may be interesting to derive the Binomial Probability Mass Function for a particular project, although it may not be practical in terms of the resources and time required to capture and analyze the data. Furthermore, the resulting information may not be meaningful or useful to the current effort of process improvement.

One thing that makes Test Metrics unique, in a way, is that they are gathered during the test effort (towards the end of the SDLC), and can provide measurements of many different activities that have been performed throughout the project. Because of this attribute, Test Metrics can be used in conjunction with Root Cause Analysis to quantitatively track issues from points of occurrence throughout the development process. Finally, when Test Metrics data is accumulated, updated and reported on a consistent basis, it allows trend analysis to be performed on the information, which is useful in observing the effect of process changes over multiple projects. Metrics are measurements, collections of data about project activities, resources and deliverables. Metrics can be used to help estimate projects, measure project progress and performance, and quantify product attributes. Examples include:

· product metrics, e.g., number of lines of code in a product, number of requirements in an SRS

· software development resource metrics, e.g., number of people working on a project

· software development process metrics, e.g., number of lines of code inspected

2.1 TESTING PROCESS FLOW
Once it was clear that Testing was much more than “Debugging” or “Problem fixing”, it was apparent that testing was more than just a phase near the end of the development cycle. Testing has a lif e cycle of its own and there is useful and constructive testing to be done throughout the entire life cycle of development. This means that testing process begins with the requirements phase and from there parallels the entire development process. In other words, for each phase of the development process there is an important testing activity. This necessitates the need to migrate from an immature, adhoc way of working to having a full-fledged Testing Process. The following is the life cycle for the complete Test Development and Execution Process scheme.

[image: image1.emf]
Fig. 1. Test Development and Execution Process scheme.
2.2 THE NEW TEST METRICS PHILOSOPHY
An optimized IT organization balances quality, cost and schedule. In doing so, IT can prioritize testing activities, make effective use of limited resources and be more agile in response to business change as described in our well documented IOSTP [3]. Test metrics and data gathering regarding the testing costs, testing failure costs, and defects are essential to manage and control testing function efficiently and effectively by A comprehensive Metrics Program that we call Software Testing Metrics Framework (STMF) which is established and maintained to periodically check the health of the Testing Process with respect to “Defect Detection” and “Defect Prevention” effectiveness. This is done by “Monitoring & Measuring” the different Metrics associated with “Defect Detection” and “Defect Prevention”. Whenever, or wherever, the Testing process is found to be ineffective, it is “Optimized” accordingly[3,4]. Accurate data and relevant metrics provide information for decision making in relation to quality of products and processes. Otherwise the release decisions, further investments, and process changes are troublesome to justify without proper information. Hard data about the current situation also concretizes the true facts enabling to set up feasible and rational objectives.

By establishing appropriate metrics, an organization can balance the cost of testing with the benefits derived from that testing. In order for metrics to be effective, the data collected must allow an organization to understand clearly:

• When the cost of further testing would outweigh the risk to the business.

• The cost to fix defects at the various stages of a project life cycle.

• The potential risk and subsequent costs to the business if the amount of testing were to be reduced.

This information can then be used to provide the organization with an informed basis of decision and effective ways to:

• Estimate the testing budget/spend.

• Spend more efficiently for future projects.

• Potentially reduce the overall costs of testing, realizing maximum value.

• Reduce total development and production support costs.

 During individual projects, project metrics can be compared with accumulated experience to provide an early indication of quality levels and the accuracy of estimates. This in turn enables effective management and cost control at a project management level.
2.3 PLAN – DO – MEASURE – ACT
In most organizations there is a lot of Do-Do-Do-Do and in many organizations there is a lot of Plan-Do-Plan-Do. But to close the cycle, the other two activities must be added. We plan (make estimates), Do (execute our plan), Measure (measure our progress), and Act (Compare the actual progress against the estimated progress and make changes to reduce the difference). For beginners at software metrics, this cycle can be applied to cost, effort and schedule, given the right measurements. The encompassing body is the Software Development Life Cycle. At the beginning of the project, the key parameters like “Schedule”, “Cost” and “Quality” are “Estimated” or “Predicted”. These are subsequently mon itored throughout the life cycle. The “Schedule” is monitored in terms of “Time Slip”. The “Cost” is monitored in terms of “Effort Slip”. The “Quality” is monitored in terms of “Defect Density”.

Testing Process, as can be seen from the above, is a sub set of the software development life cycle. The main focus areas

are:

· Defect Detection

· Defect Prevention

as shon on fig 2.
[image: image2.emf]
Fig. 2. The Software Testing Metrics Framework Process scheme.
2.3.1 KEEP IT SIMPLE
What Are Software Metrics?

Software metrics are measures that are used to quantify software, software development resources, and/or the software development process. This includes items which are directly measurable, such as lines of code, as well as items which are calculated from measurements, such as earned value. Everyone who develops software uses some kind of software metrics. However, when asked what software metrics are, the tendency is to restrict the response to software size measurements, such as lines of code or function points. In reality, software metrics include much more than primitive measures of program size. Software metrics include calculations based on measurements of any or all components of software development. For example, consider the system integrator who wishes to determine the status of a project’s test phase. He or she will undoubtedly ask for information on the proportion of tests that have been executed, the proportion that were executed successfully, and the number of defects identified. These measures are all examples of primitive - yet useful - software metrics. Consider the engineer who is responsible for improving the performance of a software product. He or she will consider items such as memory utilization, I/O rates, and the relative complexity of software components. These are also examples of software metrics. There is nothing overly complicated about software metrics. In fact, the biggest challenge in establishing an effective metrics program has nothing to do with the formulas, statistics, and complex analysis that are often associated with metrics. Rather, the difficulty lies in determining which metrics are valuable to the company, and which procedures are most efficient for collecting and using these metrics.

Our’s STMF-Metrics methodology begins by showing the value of tracking the easy metrics first. So, what are “easy metrics”? Most Test Analysts are required to know the number of test cases they will execute, the current state of each test case (Executed/Unexecuted, Passed/Failed/Blocked, etc.), and the time and date of execution. This is basic information that is generally tracked in some way by every Test Analyst. When we say “keep it simple” we also mean that the Metrics should be easy to understand and objectively quantifiable. Metrics are easy to understand when they have clear, unambiguous definitions and explanations. Below are some examples of the definition and explanation of the 'easy metrics'.
2.3.2 CREATE MEANINGFUL METRICS
Test Metrics are meaningful if they provide objective feedback to the Project Team regarding any of the development processes - from analysis, to coding, to testing – and support a project goal. If a metric does not support a project goal, then there is no reason to track it – it is meaningless to the organization. Tracking meaningless metrics wastes time and does little to improve the development process. Metrics should also be objective. As indicated in the sample definition shown in the previous section, an objective metric can only be tracked one way, no matter who is doing the tracking. This prevents the data from being corrupted and makes it easier for the project team to trust the information and analysis resulting from the metrics. While it would be best if all metrics were objective, this may be an unrealistic expectation. The problem is that subjective metrics can be difficult to track and interpret on a consistent basis, and team members may not trust them. Without trust, objectivity, and solid reasoning, which is provided by the Test Metrics, it is difficult to implement process changes.

2.3.3 TRACK THE METRICS
Tracking Test Metrics throughout the test effort is extremely important because it allows the Project Team to see developing trends, and provides a historical perspective at the end of the project. Tracking metrics requires effort, but that effort can be minimized through the simple automation of the Run Log (by using a spreadsheet or a database) or through customized reports from a test management or defect tracking system. This underscores the 'Keep It Simple' part of the philosophy, in that metrics should be simple to track, and simple to understand. The process of tracking test metrics should not create a burden on the Test Team or Test Lead; otherwise it is likely that the metrics will not be tracked and valuable information will be lost. Furthermore, by automating the process by which the metrics are tracked it is less likely that human error or bias can be introduced into the metrics.

2.3.4 TYPES OF METRICS – BASE AND CALCULATED
Base metrics constitute the raw data gathered by a Test Analyst throughout the testing effort. These metrics are used to provide project status reports to the Test Lead and Project Manager; they also feed into the formulas used to derive Calculated Metrics. We suggests that every project should track the following Test Metrics:
	# of Test Cases
	# of First Run Failures

	# of Test Cases Executed
	Total Executions

	# of Test Cases Passed
	Total Passes

	# of Test Cases Failed
	Total Failures

	# of Test Cases Under Investigation
	Test Case Execution Time

	# of Test Cases Blocked
	Test Execution Time

	# of Test Cases Re-executed
	

As seen in the ‘Keep It Simple’ section, many of the Base Metrics are simple counts that most Test Analysts already track in one form or another. While there are other Base Metrics that could be tracked, we believes this list is sufficient for most Test Teams that are starting a Test Metrics program.

Calculated Metrics convert the Base Metrics data into more useful information. These types of metrics are generally the responsibility of the Test Lead and can be tracked at many different levels (by module, tester, or project). The following Calculated Metrics are recommended for implementation in all test efforts:
	% Complete
	% Defects Corrected

	% Test Coverage
	% Rework

	% Test Cases Passed
	% Test Effectiveness

	% Test Cases Blocked
	% Test Efficiency

	1st Run Fail Rate
	Defect Discovery Rate

	Overall Fail Rate
	Defect Removal Cost

These metrics provide valuable information that, when used and interpreted, oftentimes leads to significant improvements in the overall SDLC. For example, the 1st Run Fail Rate, as defined in the STMF- Metrics Methodology, indicates how clean the code is when it is delivered to the Test Team. If this metric has a high value, it may be indicative of a lack of unit testing or code peer review during the coding phase. With this information, as well as any other relevant information available to the Project Team, the Project Team may decide to institute some preventative QA techniques that they believe will improve the process. Of course, in the next project, when the metric is observed it should be noted how it has trended to see if the process change was in fact an improvement.

2.3.5 THE FINAL STEP - INTERPRETATION AND CHANGE
As mentioned earlier, test metrics should be reviewed and interpreted on a regular basis throughout the test effort and particularly after the application is released into production. During the review meetings, the Project Team should closely examine ALL available data, and use that information to determine the root cause of identified problems. It is important to look at several of the Base Metrics and Calculated Metrics in conjunction with one another, as this will allow the Project Team to have a clearer picture of what took place during the test effort. If metrics have been gathered across several projects, then a comparison should be done between the results of the current project and the average or baseline results from the other projects. This makes trends across the projects easy to see, particularly when development process changes are being implemented. Always take note to determine if the current metrics are typical of software projects in your organization. If not, observe if the change is positive or negative, and then follow up by doing a root cause analysis to ascertain the reason for the change.

3. WHY METRICS SPECIFIC TO SW TESTING ARE ESSENTIAL

Metrics help you better control your software projects and learn more about the way your organization works. Specifically, the measurements described in this paper first answers the question of whether Software Testing is "doing the right thing" (effectiveness). Once there is assurance and quantification of correct testing, metrics should be developed that determine whether or not Software Testing "does the thing right" (efficiency) as we did during M&S of Optimized Software Testing model which combine Risk Management and Earned Value Management called RBOST [4]. You can measure many aspects of your software products, projects, and processes. The trick is to select a small and balanced set of metrics that will help your organization track progress toward its goals. Major components (depicted in Fig. 1) of proposed Software Testing Metrics Framework are: 1) The Goal Question Metric (GQM) process, created by Victor Basili and his colleagues at the University of Maryland [2], is a good place to begin targeting the specific measurement needs of an organization, 2) Balanced Scorecard (BSC) that ensures set of measures providing coverage of all elements of performance and avoid hidden trade-offs and 3) Process Model Performance measures that are most meaningful with respect to selected areas of performance, prefere outcome then output measures over process and input measures.

The main emphasis of GQM is goal directed measurement. An organization usually starts with generic goals that must be refined. For example, “Reduce the number of failures found on a project”. This is certainly a goal, but is it well enough refined? One technique to further refine goals, making them specific enough that they are applicable to the direction of the organization, is the SMART technique.

To answer these questions, specific categories of measurement data must be available to the project manager. The issues, key questions related to each issue, and categories of measures necessary to answer the questions are show in
 Table 1.
 3.1 BASIC SOFTWARE TESTING PROCESS METRICS

By focusing data collection activities on measurement categories that answer the key issue questions the project can minimize resources devoted to the measurement process. Among many Goals and Problems identified in former SDP/STP, before IOSTP deployment [3], our focus for STP improvement for demonstration purpose in this paper were issues - Development/Testing Performance and Product Quality i.e. only to these sampled issues, key questions related to each issue, and categories of measures necessary to answer the questions are show in Table 2 to 4 and some graphical presentations in figures 3 to 5. Measuring the impact and consequences of problems that arise during testing is a critical step in the process. This should include analysis of collected measurements and calculated metrics to find out how much of the software is affected by a given problem, at what point during testing a problem was found, and what kinds of problems regression tests are attempting to uncover.
The idea is to generate questions about the goal that will lead to specific metrics. A few questions to consider are:

· Is this project similar enough to the previous project that this type of comparison makes sense?

· What are the causes of critical defects?

· What data about duration testing indicates that 20% more critical failures can be found using these techniques?

· In the last product, what was the percentage of “critical” failures found, for the corresponding time period, as compared to the total?

· How many critical defects are expected for the same period on the next project?

· What duration test suite is appropriate for this project?

· Does duration testing enable finding a higher percentage of critical defects than regular testing?

Table 1. The issues, key questions related to each issue, and categories of measures
	Issue
	Key Questions
	Measurement Category

	1. Schedule & Progress
	Is the project meeting scheduled milestones?

How are specific activities and products progressing?

Is project spending meeting schedule goals?

Is capability being delivered as scheduled?
	1.1 Milestone Performance

1.2 Work Unit Progress

1.3 Schedule Performance

1.4 Incremental Capability

	2. Resources & Cost
	Is effort being expended according to plan?

Are qualified staffs assigned according to plan?

Is project spending meeting budget objectives?

Are necessary facilities and equipment

available as planned?
	2.1 Effort Profile

2.2 Staff Profile

2.3 Cost Performance

2.4 Environment Availability

	3. Growth & Stability
	Are the product size and content changing?

Are the functionality and requirements

changing?

Is the target computer system adequate?
	3.1 Product Size & Stability

3.2 Functional Size & Stability

3.3 Target Computer Resource Utilization

	4. Product Quality
	Is the software good enough for delivery?

Is the software testable and maintainable?
	4.1 Defect Profile

4.2 Complexity

	5. Development / Testing Performance
	Will the developer be able to meet budget and schedules?

Is the developer efficient enough to meet current commitments?

How much breakage to changes and errors has to be handled?
	5.1 Process Maturity

5.2 Productivity

5.3 Rework

	6. Technical Adequacy
	Is the planned impact of the leveraged technology being realized?
	6.1 Technology Impacts

Table 2. Key questions related to each issue, and categories of measures

	4. Product Quality
	Is the software good enough for delivery?
	4.1 Defect Profile

	5. Development / Testing Performance
	Is the developer efficient enough to meet current commitments?
	5.2 Productivity

Once a list of valid questions are created, measurements are generated. When considering metrics, it is often helpful to list the raw data that must be collected. This raw data is sometimes referred to as “primitive metrics”. In this example, some important raw data is:

· Number of critical defects with a severity level of three and four.

· Time in duration testing.

· Total number of defects found in duration testing time period.

· Number of critical defects found on the last project for the corresponding time period.

· Number of total defects on last project for the corresponding time period.

Table 3. Measurement Category and Specific Measures
	Measurement Category
	Specific Measures

	4.1 Defect Profile
	4.1.1 Problem Report Trends

4.1.2 Problem Report Aging

4.1.3 Defect Density

4.1.4 Failure Interval

Once the raw data is defined, more complex, or “computed” metrics are generated based on combinations of primitive metrics.

[image: image3.png]Code
Requirements 7%
56%

s

Design
27%

Fig. 3. Typical Distribution of Bugs

Deriving measurements from raw data and translating that data into something useful to managers and/or developers is essential in tracking real progress towards a goal. Important computed metrics in this example are:

· Number of critical failures found in duration testing time period / Total number of failures found in duration testing time period.

- Number of critical failures (severity 3&4) found in corresponding time period on previous project/Total number of failures found in corresponding time period on previous project. After collection and analysis phase statistical methods and tools are used to identify and confirm root causes of defects. Not only must analysis of the data be performed, but also an in depth analysis of the process to ensure an understanding of how the work is actually being done must be performed to identify inconsistencies or problem areas that might cause or contribute to the problem. Deliverables of this phase are: data and process analysis, root cause analysis, quantifying the gap/opportunity and checkpoints for completion is to identify gaps between current performance and the goal performance.
[image: image4.png]Status of Open Deficiencies in Delivered Projects

Number of Deficiencies

That Have Been Open x Days

Severity

Levels | x<30|30<x 26060 <x290 | x>90 | Totals
Severity 1| 2 1 3
Severity2| 3 1 1 5
Severity3| 3 2 1 1 7
Severity 4| 4 3 3 2 | 12
Severity 5| 8 6 3 3 [20

Totals 20 13 8 6 47

Fig. 5. Typical time to Fix Bugs vs severity levels
[image: image5.emf]
Fig. 4. Typical Distribution of Effort to Fix Bugs
In proposed STMF our focus is on software Error and Defect Root Cases Analysis applying Defect Classification scheme as described in our paper about Software Testing Process Improvement to achieve a high ROI of 100:1 [5]. So by combining all of the different perspectives of schedule, functionality, code, and problem resolution, it is possible to understand and manage software testing, rather than treating it as a black box as we explained in our paper of proposed
STMF, Part 2 [5].

Table 4. Focus question and specific measure

	4 PRODUCT QUALITY

	Are difficult problems being deferred?
	4.1.2 Problem Report Aging

	Are reported problems being closed in a timely manner?
	4.1.2 Problem Report Aging

	Do report arrival and closure rates support the scheduled completion date of integration and test?
	4.1.1 Problem Report Trends

	FOCUS QUESTION
	SPECIFIC MEASURE

	How long does it take to close a problem report?
	4.1.2 Problem Report Aging

	How many problem reports are open? What are their priorities?
	4.1.1 Problem Report Trends

	How many problems reports have been written?
	4.1.1 Problem Report Trends

	How much code is being reused?
	4.2.6 Depth Of Inheritance

	How often will software failures occur during operation of the system?
	4.1.4 Failure Interval

	How reliable is the software?
	4.1.4 Failure Interval

	What components are candidates for rework?
	4.1.3 Defect Density

	What components have a disproportionate amount of defects?
	4.1.3 Defect Density

	What components require additional testing or review?
	4.1.3 Defect Density

	What is the program’s expected operational reliability?
	4.1.4 Failure Interval

	What is the quality of the software?
	4.1.3 Defect Density

3. CONCLUSION

Although it is important to measure the quality of the product under development, it is equally important to measure the effectiveness and efficiency of Software Testing itself as an activity – not a service. We proposed basic metrics of key software testing activities and artifacts in development processes that can be objectively measured, according to ISO 15939 – Software Measurement as a foundation for enterprise wide improvement of Integrated and Optimized Software Development / Testing Pocess (IOSTP) [3-5] i.e. Software Testing Metrics Framework (STMF). Specifically, the measurements described in this paper first answers the question of whether Software Testing is "doing the right thing" (effectiveness). Once there is assurance and quantification of correct testing, metrics should be developed that determine whether or not Software Testing "does the thing right" (efficiency). By measuring effectiveness and efficiency, a Software Testing organization can better communicate its own importance using factual information.
References
[1] S. H. Kan. Metrics and Models in Software Quality Engineering, Second Edition, Addison-Wesley, 2003.

[2] [6] V. R. Basili, G. Caldiera, H. D. Rombach. The Goal Question Metric Approach, Encyclopedia of Software Engineering, volume 1, John Wiley & Sons, 1994, pp. 528-532

[3] Lj. Lazić, The Integrated and Optimized Software Testing Process, PhD Thesis, School of Electrical Eng.,Belgrade, 2007.

[4] [10] Lj. Lazić, Mastorakis, N. RBOSTP: Risk-based optimization of software testing process Part 2”, WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS, Issue 7, Volume 2, p 902-916, July 2005.
[5] [12] Lj. Lazić, N. Mastorakis. A Framework of Software Testing Metrics – Part 2, 11h WSEAS CSCC (CIRCUITS-SYSTEMS-COMMUNICATIONS-COMPUTERS) Multiconference, Agios Nikolaos, Crete Island, Greece, July 23-28, 2007.

PAGE
378

