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Sadržaj – U ovome radu opisane su eXtended Number Theoretic Transforms (xNTT) koje predstavljaju proširenje Number Theoretic Transforms (NTT). xNTT uvode nove module, elemente generatore i generalno veće dužine transformacija umesto 
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, predložene xNTT  transformacije imaju maksimalnu dužinu 
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Abstract – In this paper an eXtended Number Theoretic Transforms (xNTT) is presented, giving an extension of Number Theoretic Transforms (NTT). It introduces new modulus, generating elements and in general longer length of transforms instead of old definition of NTT being 
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, the proposed xNTT transforms have maximal transformation length 
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1. Introduction
Transforms possessing the cyclic convolution property (CCP) can be used to compute convolutions of two long discrete integer sequences efficiently. Most famous algorithm for fast implementation of DFT-like transforms is FFT. FFT supports fast computation of DFT over finite and infinite algebraic structures and posses CCP. DFT over finite algebraic structures 
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 like fields and rings [1] are known as  Number Theoretic Transforms or shortly NTT. Basic developments in this area were done by Agarwal and Burrus[2][3][4]. NTT attracted very fast a lot of popularity because of two reasons. First some types of NTTs do not need multiplications at all and they can compute exactly, i.e. without any rounding error. Still there are some areas where exact calculation are mandatory like multiplication of big numbers[1], cryptography[17], digital watermarking[16] and image/audio processing[5]. 
From the point of arithmetical complexity the fastest NTTs are the ones based on FFT (most efficient for lengths of 
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). A drawback of using FFT over infinite algebraic structures (further referred as ‘real FFT’ because of real coefficients involved in computation) for correlation of real sequences is the need to use complex arithmetic due to the appearance of complex so called twiddle factors. The number of operations  needed for real FFT transforms over infinite algebraic field roughly is:
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In case of NTT (FFT implementation) operation count roughly is:
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Such a difference in the operation count was quite attractive and Agarwal/Burrus [2] implemented an optimized NTT algorithm on a 32bit IBM 370/155. For convolutions of real sequences, they found NTT to be 
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 to 
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times faster and more accurate than FFT. 

It is known that [4][5] that an NTT of length 
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 posses the CCP when:
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In this paper we present an eXtended NTT, called shortly xNTT, which posses the CCP even for transform lengths:
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The main drawback of NTTs is the need to implement arithmetic modulus some specific number. For this reason in the past the most popular transforms were Fermat Number Transform (FNT) [2] and Mersenne transform(MNT) [18] which had the simplest modulus arithmetic and modulus reduction could be implemented in a couple of clocks [7].

Although faster methods for convolutions over rational numbers like Walsh transform have been discovered, NTT stays one of the fastest methods for convolution over finite algebraic structures.

More references on the history of NTT theory can be found in [8]. The HW (hardware) implementation is consider in [9] where is proven that savings in comparison with real real FFT do exist. NTT can be also defined over complex sequences [10].

2. Analysis of cyclic groups in Z/mZ
The analysis of NTT is based on the finite multiplicative cyclic groups with neutral element for multiplication ‘1’. A goal of this paper is to define xNTT over every finite ring
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 and  over extended subset of cyclic groups over which NTT could not be defined. The structure of those cyclic groups is defined with so called structural theorem (3) (or Fundamental theorem of finitely generated Abelian groups):
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which also shows what are the expected orders of cyclic groups in some ring 
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. Cyclic groups existing in some ring 
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 can be visually presented by so called cycle graphs [11] based on decompositions stated by structural theorem. An example of the construction of an xNTT will be shown in the cycle graph for Z/15Z (Fig. 1)
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Figure 1 Cycle Graph for Z/15Z
It is obvious that while the Euler totient function gives us 
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we do not necessary have an element of order 
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 in Z/15Z in fact in this case the maximal order is 
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. According to the existence condition for NTT from this cycle graph, the maximal transform length is 
[image: image35.wmf]2

. In the following chapters it is shown that xNTT can be constructed in this very case with a transform length of 4. The maximal possible cyclic group length 
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 can be seen by applying least common multiple function over Cartesian factors (4), got by applying the structural theorem (3):
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where 
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Observing xNTT behaviour over the base structures, according to Chinese Remainder Theorem-CRT,  
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, provides us with a better insight of parameter relationships. New existence conditions instead of calculation of different exponential sums, Greatest Common Divisor are based on knowing orders 
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and on the small number of simple operations, as shown in the following two chapters. 

3. Existence of classic NTT and correlation core sum analysis
Classic NTT (further denoted as cNTT) belongs to the group of DFT-like transformation and is defined as:
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[image: image51.wmf]                                 (5) 
inverse NTT, noted INTT is defined as:
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where 
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 is operation ‘congruent modulus m’, 
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The convolution property of two sequences x(n), y(n) exists for any DFT-like transforms under following conditions:
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introducing substitutes for 
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Underlined parts are irrelevant due to periodicity of 
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. Therefore, the following condition is necessary for the convolution property:
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This sum will be referred to as ‘correlation core sum’ since by observing it one can derive other types of NTTs. This identity is not only important for the convolution property but for the existence of inverse NTT transforms [8]. 

Classic set of existence conditions for cNTT which are additionally used for searching for parameters of cNTT are [1][12]:
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The maximal transform length is 
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. This statement can be confirmed by observing according to the CRT in each of the rings
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One can notice that the output range is reduced to 
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4. Construction of LNTT
LNTT stands for ‘reduced Length NTT’. They are defined with the following existence conditions: 
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The first condition is a standard condition needed for the existence of a cyclic group, the second is used to be distinguished from cNTT,  and the third condition is to have sum (12) satisfied. 
Since the second condition is different for cNTT and LNTT they are not overlapping, although they may exist over the same 
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. In order to get an equivalent set of existence conditions and to get better insight in the set of the conditions necessary for the existence of LNTT one should observe the behaviour of transforms in the base structures: 
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This will hold under the following two conditions (can be proved by the binomial formula):

1. At least in one base structures order of element is not 
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the only condition to be checked is:
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the only condition to be checked is:
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From the existence condition 2 follows that LNTT can not be defined for prime numbers, so 
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 for  LNTT  is always composite. Also from the same condition since a common factor between 
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 exists, the output range will not be as for cNTT  but reduced to:
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Interesting is that LNTT exists even for even numbers for which cNTT does not exist. A disadvantage is  that the output range is no longer equal to 
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, nevertheless a reasonable trade-off can be achieved.
The HW architecture of LNTT is the same as for the cNTT with one additional dividing (at output) with 
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5. Construction of  mNTT
mNTT stands for ‘reduced Modulus NTT’. mNTT are based on the observation that if the convolution property does not originally holds for 
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 potentially (12) holds for some value 
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This leads to a reduction in the final output range but up to the last stage the computation are done over the implementation simpler modulus 
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Differing from LNTT,  some mNTT have 
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The output range of mNTT is:
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The benefits from mNTT  are that all computations can be done over the modulus 
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, and only at the very last stage needs to be applied reduction modulus 
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6. Conclusion 

The Number Theoretic Transforms (cNTT) are explained and their extension xNTTs are introduced and discussed. cNTT have a maximal transform length of:
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while the newly introduced xNTT have a maximal length of:
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Those bigger transform lengths have a drawback of reduction in output range. Nevertheless reasonable tradeoffs can be achieved. From the point of HW implementations new transforms exist over every modulus 
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which enables the use of composite Mersenne/Fermat numbers (Table 1). Highly composite (hc.) transforms lengths are also available and are presented in the same table. With the progress in the cryptology [13][14][15] new favorable moduli were invented and xNTT could as well be defined over them successfully. 
The simplicity of the existence conditions observed over base structures enable us predicting the behaviors of xNTT over
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Z
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7

3*5

31

3*3*7

127

3*5*17

7*73

3*11*31

23*89

3*3*5*7*13

8191

3*43*127

7*31*151

3*5*17*257

131071

3*3*3*7*19*73

524287

3*5*5*11*31*41

7*7*127*337

3*23*89*683

47*178481

3*3*5*7*13*17*241

31*601*1801

3*2731*8191

7*73*262657

3*5*29*43*113*127

233*1103*2089

3*3*7*11*31*151*331

2147483647

3*5*17*257*65537
	2 (hc.2)

6 (hc.2)

2 (hc.2)

30 (hc.2)

2 (hc.2)

126 (hc.2)

2 (hc.2)

6 (hc.2)

2 (hc.2)

22 (hc.2)

2 (hc.2)

8190 (hc.2)

2 (hc.2)

6 (hc.2)

2 (hc.2)

131070 (hc.2)

2 (hc.2)

524286 (hc.2)

2 (hc.2)

6 (hc.2)

2 (hc.2)

46 (hc.2)

2 (hc.2)

30 (hc.2)

2 (hc.2)

6 (hc.2)

2 (hc.2)

58 (hc.2)

2 (hc.2)

2147483646 (hc.2)

2 (hc.2)
	2 (hc.2)

6 (hc.2)

4 (hc.4)

30 (hc.2)

6 (hc.2)

126 (hc.2)

16 (hc.16)

72 (hc.8)

30 (hc.2)

88 (hc.8)

12 (hc.4)

8190 (hc.2)

126 (hc.2)

150 (hc.2)

256 (hc.256)

131070 (hc.2)

72 (hc.8)

524286 (hc.2)

40 (hc.8)

336 (hc.16)

682 (hc.8)

178480 (hc.16)

240 (hc.16)

1800 (hc.8)

8190 (hc.2)

262656 (hc.512)

126 (hc.16)

2088 (hc.8)

330 (hc.2)

2147483646(hc.2)

65536 (hc. 65536)
	5

3*3

17

3*11

5*13

3*43

257

3*3*3*19

5*5*41

3*683

17*241

3*2731

5*29*113

3*3*11*331

65537

3*43691

5*13*37*109

3*174763

17*61681

3*3*43*5419

5*397*2113

3*2796203

97*257*673

3*11*251*4051

5*53*157*1613

3*3*3*3*19*87211

17*15790321

3*59*3033169

5*5*13*41*61*1321

3*715827883

641*6700417
	4 (hc.4)

2 (hc.2)

16 (hc.16)

2 (hc.2)

4 (hc.4)

2 (hc.2)

256 (hc.256)

2 (hc.2)

4 (hc.4)

2 (hc.2)

16 (hc.16)

2 (hc.2)

4 (hc.4)

2 (hc.2)

65536 (hc.65536)

2 (hc.2)

4 (hc.4)


2 (hc.2)

16 (hc.16)

2 (hc.2)

4 (hc.4)

2 (hc.2)

32 (hc.32)

2 (hc.2)

4 (hc.4)

2 (hc.2)

16 (hc.16) 

2 (hc.2)

4 (hc.2)

2 (hc.2)

128 (hc.128)
	4 (hc.4)

2 (hc.2)

16 (hc.16)

10 (hc.2)

12 (hc.4)

42 (hc.2)

256 (hc.256)

18 (hc.2)

40 (hc.8)

682 (hc.2)

240 (hc.16)

2730 (hc.2)

112 (hc.16)

330 (hc.2)

65536 (hc.65536)

43690 (hc.2)

108 (hc.4)

174762 (hc.2)

61680 (hc.16)

5418 (hc.2)

2112 (hc.64)

?2796202 (hc.2)

672 (hc.256)

4050 (hc.2)

1612 (hc.4)

87210 (hc.2)

15790320 (hc.16)

3033168 (hc.16)

1320 (hc.8)

715827882 (hc.2)

6700416 (hc.128)


Table 1 Overview of maximal transforms lengths,  in case of cNTT and xNTT 
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