[image: image1.wmf]0

0

1

2

3

0

0

1

1

4

8

8

4

INFOTEH-JAHORINA, Vol. 5, Ref. B-II-6, p. 97-100, March 2006.

ANALYSIS OF H.264 INTER PREDICTION MEMORY CONSUMPTION AND REQUIRED DMA BANDWIDTH

Sabolč Pal, Dušan Ačanski, Marija Djekić, MicronasNIIT Novi Sad

Abstract - This paper gives an analysis of the memory consumption and DMA bandwidth required by the inter prediction (motion compensated prediction) in H.264 decoder. The size of the memory and bandwidth required are discussed for various cases. Besides the theoretical analysis, a practical approach to the problem is given, including analysis of the load overhead and the influence of different block sizes on the bandwidth.

1. INTRODUCTION

The H.264/MPEG-4 AVC (Advanced Video Coding) is the latest video coding standard released, developed as an answer to the growing need for better compression of video images in a wide range of applications. This development was possible because of drop in price of processors and memory modules. Therefore, new processors, capable of decoding H.264 streams in real time, are appearing on the market. This paper gives an overview of inter prediction, analysing its memory and DMA needs. Beside the theoretical values, analysis of the load overhead and the influence of block sizes on this overhead is given, too.

2. INTER PREDICTION

Lossy video compression systems are based on the principle of removing subjective redundancy [1]. Most video coding methods exploit both temporal and spatial redundancy to achieve compression. In the temporal domain, there is usually a high correlation between frames of video that were captured at around the same time. The objective of inter prediction is to reduce this temporal redundancy by forming a prediction of the current frame based on neighboring frames. The prediction is then subtracted from the original frame and just the resulting residual frame is encoded along with the side information needed to reproduce the prediction. The prediction is formed by moving areas from the reference frames. The most important side information are motion vectors (MVs), referent frame indications and frame partitioning. The accuracy of the prediction can usually be improved by smaller partition sizes and finer MV resolutions. However, this increases the amount of side information.
Block based motion compensation is used by the H.264 standard, supporting a range of block sizes (down to 4x4) and fine sub-pixel MVs. The luminance macroblock (MB) can be split up in four ways: 16x16, 8x16, 16x8 or 8x8 (Figure 1.). Each of the sub-divided regions is a MB partition. If the 8x8 mode is chosen, each MB partition may be split up in a further four ways (MB sub-partitions): 8x8, 4x8, 8x4 or 4x4 (Figure 2.).

Each chroma block is partitioned in the same way as the luma component, except that the horizontal and vertical resolutions of the partition may vary depending on the chroma sub sampling method.

Sub-pixel motion compensation can provide significantly better compression performance than integer-pixel compensation, at the expense of increased complexity [1]. Quarter-pixel accuracy MVs are supported by the H.264 for the luma component.

[image: image2.wmf]0

0

1

2

3

0

0

1

1

16

8

16

8

Figure1. Macroblock partitions: 16x16, 8x16, 16x8 and 8x8.

[image: image3.png]ee

c

aa

bb

99

hh

Pla

Gla|b

dd

cc

Figure2. Macroblock sub-partitions: 8x8, 4x8, 8x4 and 4x4.

3. FORMING THE PREDICTION

The referent frame indexes, MVs and partitioning information are derived from the compressed bitstream, provided by the encoder. The referent block is located by the help of the frame indexes and the integer part of the MVs. The size of the referent block to be loaded is determined by the output block size and the fractional part of the MVs. The fractional part of the MV determines the appropriate interpolation method to be performed, too. Loading of the referent blocks is usually performed by a two-dimensional (2D) DMA controller. Although the partitioning and the MVs for luma and chroma components are related, the methods of interpolation significantly differ.

3.1. Luma interpolation

For the luma component of the picture, the half-pixel samples are generated first, using a six tap FIR filter. The filtering weights are the following: (1, -5, 20, 20, -5, 1)/32. Half-pixel samples, adjacent to integer samples, are interpolated using integer position samples. Half-pixel samples adjacent to other half-pixel samples (e.g. sample denoted by j in Figure 3.) are interpolated with the help of previously computed adjacent half-pixel samples, using the same FIR filter as mentioned above.

If all of the half-pixel samples are available, the samples at quarter-pixel positions can be derived using a linear interpolation. Quarter-pixel positions with two horizontally or vertically adjacent half- or integer pixel position samples (e.g. a, i, d or f from Figure 3.) are linearly interpolated between these adjacent samples.
The remaining quarter-pixel position samples (e, g, p and r) are linearly interpolated between a pair of diagonally opposite half-pixel samples [2].
[image: image4.wmf]A

B

C

D

a

y

FRAC

x

FRAC

8 - x

FRAC

8 - y

FRAC

Figure3. Luma interpolation example.

3.2. Chroma interpolation

Chroma sample interpolation requires eighth-pixel resolution MVs. The interpolated samples are computed by using linear interpolation between adjacent integer-pixel position samples. For example, sub-sample position a (see Figure 4.) should be computed as follows:

Figure4. Chroma interpolation example.

a = round([x*A+y*B+z*C+v*D]/64),

Where:

x = (8-xFrac)*(8-yFrac)

y = xFrac*(8- yFrac)

z = (8- xFrac)* yFrac
v = xFrac * yFrac
4. MEMORY AND DMA NEEDS

Memory and DMA requirements can be represented in several ways, the most popular being in terms of kB/s (MB/s) needed to perform the given task. However, this approach would be usable for a particular MB partitioning, frame size and rate. Since the aim of this paper is to give a widely usable analysis, the given results are configuration independent. For this reason the memory and DMA needs are represented in a more flexible way, with number of bytes (pixels) needed to derive a given MB (sub-) partition. This number can be easily extrapolated to the whole MB and frame, for a particular MB partitioning. Nevertheless, they can also be converted in to kB/s for a specific configuration (particular set of parameters).

Since the interpolation methods for luma and chroma samples differ, their memory requirements will be discussed separately.

4.1. Luma analysis

From the memory point of view, the half pixel interpolation (6 tap FIR filter) is important, because it requires additional pixels. The horizontal or vertical dimension of the input block is increased by 5 pixels, if interpolation in the horizontal or vertical direction is required, respectively. Half pixel interpolation is needed every time the fractional part of the MV is different from zero. These additional pixels can be treated as overhead, whose size can be significant, compared to the output block size.
Luma MVs have quarter-pixel accuracy, thus, the number of possible fractional MV value combinations is 16. Input block size and overhead analysis for each case is given in Table 1.

The variables x and y denote the horizontal and the vertical size of the MB (sub-) partition, for which the interpolation is performed, respectively. dx and dy represent the fractional part of the MVs.

Analyzing the theoretical overhead formulas, it can be stated that the overhead is reciprocally proportional to the block sizes. Taking the two extremes, a 4x4 block has an overhead of more than 400%, whilst 16x16 blocks have just about 72%.

The overhead values, given in the above table, are relative numbers emphasizing the proportion of the overhead data in the input block. To compute the absolute values, these numbers should be multiplied by (x*y)/100, giving the number of overhead pixels.

	dx
	dy
	Input block size [pixel]
	Theoretical overhead *100[%]

	0
	0
	x * y
	0

	0
	1
	x * (y + 5)
	5 / y

	0
	2
	x * (y + 5)
	5 / y

	0
	3
	x * (y + 5)
	5 / y

	1
	0
	(x + 5) * y
	5 / x

	1
	1
	(x + 5) * (y + 5)
	5/x + 5/y + 25/(x*y)

	1
	2
	(x + 5) * (y + 5)
	5/x + 5/y + 25/(x*y)

	1
	3
	(x + 5) * (y + 5)
	5/x + 5/y + 25/(x*y)

	2
	0
	(x + 5) * y
	5 / x

	2
	1
	(x + 5) * (y + 5)
	5/x + 5/y + 25/(x*y)

	2
	2
	(x + 5) * (y + 5)
	5/x + 5/y + 25/(x*y)

	2
	3
	(x + 5) * (y + 5)
	5/x + 5/y + 25/(x*y)

	3
	0
	(x + 5) * y
	5 / x

	3
	1
	(x + 5) * (y + 5)
	5/x + 5/y + 25/(x*y)

	3
	2
	(x + 5) * (y + 5)
	5/x + 5/y + 25/(x*y)

	3
	3
	(x + 5) * (y + 5)
	5/x + 5/y + 25/(x*y)

Table1. Input block size and theoretical overhead for luma inter prediction

For the worst-case approximation, input block size of (x + 5) * (y + 5) can be taken, this results in a theoretical overhead of (5/x + 5/y + 25/(x*y))*100 %. However, the given formulas apply to a MB (sub-) partition and can not be used directly for the whole frame. Instead, the worst-case partitioning of a MB should be determined, the input block sizes and overheads for each partition should be computed and summed. The numbers determined in this way can be extrapolated to frame level by multiplying them by the number of MBs in the frame. The worst-case partitioning of a MB depends on the profile and level of the implemented decoder. For more detailed information see [2]. A case study is given in the next section.

Because of the irregular input block size (9, 13 or 21 pixels in one line), correction is likely to be necessary for most of the values. The number of pixels in one line is not likely to be dividable by the memory access widths, so additional pixels will be copied, too. This additional overhead depends on the memory access width and can be derived from the following formula.
overhead = (k – [(x+5) % k]) * (y + 5) [pixel]
The operator % is the modulo operator; k denotes the minimum memory access width in bytes. The value of overhead represents the number of additional pixels (or bytes, assuming 8 bit pixels values) that will be transferred by the DMA for each block.
4.1. Chroma analysis

The chroma interpolation is performed by a linear interpolation between the four integer position pixels as described in subsection 3.2.
Chroma MVs have eighth-pixel accuracy, but in contrast to luma interpolation, all the combinations of fractional MV values result in the same input block size, required to perform the interpolation. Another difference to luma samples is, that the interpolation should be performed for both chroma components. For this reason the number of pixels to be copied should be doubled. Input block size and overhead analysis for one chroma component is given in Table 2.

	All combinations
	(x + 1)*(y + 1)
	1/x + 1/y + 1/(x*y)

Table2. Input block size and theoretical overhead for inter prediction one chroma component
The variables x, y, dx and dy are denoting the same values as in the previous subsection, but now for the chroma components.

The overhead is reciprocally proportional to the block sizes, similar as in the luma case. Taking the two extremes, a 2x2 block has an overhead of 125%, whilst an 8x8 block has just about 26%. The absolute overhead values can be derived in similar way as for the luma case.
The worst-case approximation is straightforward, since all of the combinations result in the same input block size formula. The only parameter influencing the worst-case is the MB partitioning. To determine its value, basically, the same procedure should be followed as in the luma case. Keep in mind, the chroma partitioning is related to the luma partitioning (see section 2).
Additional overhead is likely to appear because of irregular input block size (3, 5 or 9), and can be computed by the following formula.
overhead = 2 * (k – [(x+1) % k]) * (y + 1) [pixel]

The operator % is the modulo operator; k denotes the minimum memory access width, in bytes.

5. CASE STUDY
A case study will be given in this section to make the usage of the given tables clearer. For this, let us suppose a Main profile decoder, supporting level 4.1. The most important constraints can be derived from [2]. For this particular case, they are:
- Support of B frames

- 4:2:0 chroma sub sampling
- Sample values represented with 8 bits

- Maximum frame size in MBs: 8192;

- Maximum MB processing rate (MB/s): 245760;

- Maximum number of MVs per two consecutive MB: 16;

- Minimal luma bi-prediction size: 8x8;

Let 64 bit be the minimal memory access width.

Since B frames have two reference pictures, they represent the worst-case frames for the DMA. The minimal partition size for them is 8x8, which means that 8 MVs are needed per MB. This fulfills the constraint about the maximal number of MVs per two consecutive MB. So the luma MB will be partitioned on 4 8x8 blocks. The chroma components will be partitioned on 4 4x4 blocks, because of the sub sampling mode and the interconnection with luma partitioning.
- Input block size for a luma MB:

InLuma MB = 8 * (13 * 13) = 1352 [byte];
- Input block size for both chroma MB:

InChroma MB = 2 * 8 * (5 * 5) = 400 [byte];

- The resulting theoretical input block for one MB (luma and chroma):

InTheoretical = InLuma MB + InChroma MB = 1752 [byte];

- Additional overhead because of irregular input block size, for luma loading:

OverheadAdditionalL = 2 * 4 * (8 – (13%8))*13 = 312 [byte];

- And for chroma loading:

OverheadAdditionalCh = 2*4 * 2 * (8 – (5%8))*5 = 240 [byte];

- The resulting input block for one MB (with additional overhead):

In = InTheoretical +

+ OverheadAdditionalL + OverheadAdditionalCh = 2304 [byte];

- Input block size, extrapolated to the whole frame:

InFrame = In * 8192 = 18874368 [byte];

- Required DMA bandwidth:

InDMA = In * 245760 = 540 [MB/s];

- To emphasize the significance of the additional overhead, the theoretical DMA bandwidth value is given:

InDMA = InTheoretical * 245760 ≈ 410 [MB/s];

It can be seen, that the additional overhead significantly increases the required DMA bandwidth, so it is a serious issue to be considered.
Keep in mind, that there are two types of overhead. The first is because of the characteristics of the algorithm and can not be avoided. It depends on the MB partitioning and the MVs. The other is because of the differences between input block size and memory access width. It depends on the architecture and by the right choice, it can be reduced.
However, these are just the memory and DMA needs of the inter prediction. Other parts of the algorithm use the DMA just in small amount, compared to the needs of inter prediction. The input stream parsing does not require a large bandwidth. The output DMA, which stores the decoded picture requires, for this particular case, 90 Mb/s.
6. CONCLUSION

This paper gives an overview of the memory and DMA requirements of the H.264 inter prediction, giving the size of input blocks for every MB (sub-) partition. Beside the theoretical values, possible overhead problems are considered, too. The tables, given in this paper, help to decide if the DMA of a given architecture is capable to support an H.264 decoder with required inputs in real time or not.

LITERATURE
[1] Iain E. G. Richardson, H.264 and MPEG-4 Video Compression, Wiley 2003.

[2] ITU-T Rec. H.264 / ISO/IEC 11496-10, "Advanced Video Coding", Final Committee Draft, Document JVTE022, September 2002.
97

