INFOTEH-JAHORINA, Vol. 5, Ref. B-II-3, p. 85-88, March 2006.

IMPLEMENTACIJA JPEG DEKODERA NA MDE PLATFORMI
JPEG DECODER IMPLEMENTATION ON MDE PLATFORM
Miroslava Dražić, Aleksandar Živković, Velibor Mihić, Goran Miljković, MicronasNIT Novi Sad
Sadržaj – Ovaj rad opisuje implementaciju JPEG dekodera na MDE platformi i daje pregled funkcionalnosti i mogućnosti biblioteke. Biblioteka je integrisana u postojeće okruženje na platformi. Cilj je bio da se postigne dekodiranje u realnom vremenu sa maksimalnim mogućnostima i sa minimalnom potrošnjom memorije i procesorskog vremena. Ovaj rad daje pregled ukupnih mogućnosti dekodovanja u realnom vremanu JPEG dekodera, a najbitniji delovi za implementaciju i integraciju su objašnjeni sa više detalja. Postignuti rezultati i performanse tokom dekodovanja u realnom vremenu su predstavljeni zajedno sa rezultatima potrošnje memorije i procesorskog vremena.
Abstract – This paper presents the implementation of JPEG decoder library on MDE platform and gives an overview of library features and abilities. The library is integrated into platform existing environment. The main goal was to achieve the real time decoding with maximal capabilities and with minimal memory and processor (MIPS) requirements. This paper gives an overview of entire JPEG decoder real time decoding capabilities, but essential parts for implementation and integration were explained in more details. Achieved results and performance, during the real time decoding, are presented together with overall memory consumption and processor time requirements.
1. INTRODUCTION
JPEG is a standard image compression mechanism. JPEG stands for Joint Photographic Experts Group – the committee that has issued the standard [1]. JPEG is designed for compressing either full-color or grey-scale images of natural scenes.

This paper represents the implementation of JPEG decoder on MDE platform with minimal resources consumption. The goal was to reorganize the relevant parts of code, to implement the nonexistent functionality of the decoder and to achieve real time decoding on MIPS processor. The structure of whole JPEG decoder will be presented shortly, and in more detail the parts of the decoder interesting for this implementation.

2. JPEG ALGORITHM
JPEG can achieve very large compression ratio. The compressed image can be as much as one hundred times smaller then the original image. The lower the level of detail and the fewer abrupt color or tonal transitions, the JPEG algorithm becomes more efficient. This is possible because JPEG algorithm discards irrelevant data as it compresses the image, and thus it is called “lossy” compression technique. This means that once an image is compressed using JPEG compression, data is lost and cannot be recovered from the compressed image.

The operation of the JPEG algorithm can be divided into three basic stages:

· The removal of the data redundancy by means of the DCT (Discrete Cosine Transformation).
· The quantization of the DCT coefficients, using weighting functions optimized for the human visual system.

· The encoding of the data to minimize the entropy of the quantized DCT coefficients. The entropy encoding is done with a Huffman variable-word-length encoder.

Although color conversion is a part of the redundancy removal process, it is not part of the JPEG algorithm. It is the goal of JPEG to be independent of the color space. JPEG handles colors as separate components. Therefore, it can be used to compress data from different color spaces such as RGB, YCbCr, and CMYK. However, the best compression results are achieved if the color components are independent (not correlated), such as in YCbCr, where most of the information is concentrated in the luminance (luma) component and less in the chrominance (chroma) component. Another advantage of using the YCbCr color space comes from reducing the spatial resolution of the Cb and Cr chrominance components. Because chrominance does not need to be specified as frequently as luminance, every other Cb element and every other Cr element can be discarded. Therefore, the JPEG algorithm usually transforms the image from RGB to luminance/chrominance (Y-Cb-Cr) color space first and then down samples the color components and leaves the brightness component alone (see figure 1).
[image: image1.wmf]R

G

B

Y

Cb

Cr

COLOR

CONVERSION

Y

Cb

Cr

DOWN

SAMPLING

Figure 1 Color conversion and down sampling
Next, the JPEG algorithm approximates 8x8 blocks of pixels with a basic value representing the average, plus some frequency coefficients for nearby variations using DCT. These DCT coefficients are then quantized, scanned and encoded. This algorithm of compression is known as “baseline” mode (see figure 2).

[image: image2.wmf]8

x

8

PIXEL

BLOCK

COLOR

CONVERSION

QUANTIZER

DCT

ENTROPY

ENCODER

COMPRESED IMAGE

DATA

ENTROPY

DECODER

DEQUANTIZER

IDCT

COLOR

CONVERSION

8

x

8

PIXEL

BLOCK

TABLE

SPECIFICATION

TABLE

SPECIFICATION

Figure 2 Simplified encoder/decoder diagram
Beside the baseline, there are four modes of JPEG compression: sequential, lossless, progressive and hierarchical.

3. LIBRARY CAPABILITIES
JPEG decoder library supports baseline and progressive decoding modes. Supported source formats are encoded/compressed RGB and encoded/compressed YCbCr (also called YUV). The JPEG decoder library also supports JFIF, EXIF, PICT/JPEG and TIFF input file format. It could choose between decoding the whole picture or the thumbnail, if the thumbnail exists. The supported output formats are: RGB888, RGB565, interleaved YUV444, planar YUV444, planar YUV422, interleaved YUV422 UYVY, interleaved YUV422 YUYV, planar YUV420 and YONLY. Library also supports zoom option. Library has the specified Application Programming Interface (API). JPEG library API exports functions to access the JPEG structure. These functions are used to communicate between top level application and JPEG library:

· HED_FindHeader - start of each JPEG decoding process, parse header, fills JPEG structure with relevant entries

· JDEC_DecodePicture - decodes entire image

· JDEC_DecodeScan - decodes one scan

· JDEC_DecodeSlice - decodes one slice of an image
· JDEC_WriteToOutput - writes line by line to output display according to predefined destination format.

· JDEC_GetImageWidth - returns the width of the image being decoded in pixels. An image must be parsed for the header before this function is called.

· JDEC_GetImageHeight - returns the height of the image being decoded in pixels. An image must be parsed for the header before this function is called.

· JDEC_SetTargetSize - sets target size for picture to be decoded

· JDEC_SetTargetPosition - sets target position for picture to be decoded

· JDEC_SetTargetColor - sets target color format for output pixels.

· JDEC_GetVersionStr – returns the version string

· JDEC_GetVersion – returns the version of decoder library

4. PROJECT REQUIREMENTS
This project addresses porting of JPEG decoder library on MDE9500D platform and its integration into MICTOS (Micronas Integrated Consumer Digital Television Operating System) environment using Multimedia Codec Manager (MCM).
The MDE9500 is a complex digital TV decoder chip processing audio, video and graphics. The display concept of the MDE9500 is based on a frame buffer technology, meaning that for each pixel displayed on the screen appropriate information is stored in the memory [2].
The MDE9500 supports several frame buffers as graphics and video layers. The visible display arises from combining and mixing the different layers. This is done by the Video Processing Unit (VPU).
The Graphics Device Interface (GDI) for the MDE9500 is an easy to use application programming interface (API) to hide the complexity of the MDE9500 graphic system. It encapsulates the Graphics Accelerator and all graphic relevant parts of the Video Processing Unit. The functionality of the MDE9500-GDI reaches from simple color, character and bitmap manipulation up to a powerful window and resource management.
The goals of this project were:

· Porting of referent JPEG decoder on MDED HW platform.

· Realization of graphic output using GDI library, for displaying of decoded JPEG pictures.

· Integration of ported JPEG decoder in MICTOS Multimedia Codec Manager.

· Optimization of the decoder

4.1. JPEG DECODER OPTIMIZATION
On the very beginning of JPEG decoder optimization a particular standalone application, containing JPEG decoder was designed. This application was used to identify the time consuming hot-spots in source code. A function for displaying of decoded JPEG images was realized. This function was used as output function for multimedia codec. It was realized using existing GDI library. Existing command line application which uses MCM for was modified and extended to allow display of JPEG images.

The decoder was optimized using stand alone application with a single thread of execution. The library is optimized in two phases:
· C code optimization - JPEG decoder optimization was focused on C language level and eventually on restructuring of decoding algorithm.

· Assembly level optimization - significant optimization improvement could be achieved by writing the most demanding functions in assembler.
After finishing of assembler optimization, optimized version of JPEG decoder was reintegrated in MICTOS and decoder profiling was done on real MICTOS system.

4.2. OPTIMIZATION OF JPEG DECODER INTEGRATED IN MICTOS
JPEG decoder was integrated in MICTOS using previously developed multimedia codec manager. For this purpose a small wrapper layer on top of existing JPEG decoder API was realized that allowed coupling with multimedia codec manager. Based on previously collected profiling results, another round of the decoder optimization on real MICTOS system was performed. This optimization used some other benefits of particular HW architecture e.g. usage of Scratch Pad RAM (SPR) that exist on MDE.

5. IMPLEMENTATION OVERVIEW
The JPEG library use callback functions (for media access and file IO) to start the parsing process of the file to be decoded. IO is hidden from the JPEG library by usage of these callback functions.
The initial step for the JPEG library is to parse the JPEG structure and extract the source picture size and thumbnail size and position. These basic parameters are being stored in a “JPEG structure”, which contains these parameters accessible to the top level application with SET/GET commands. The top level application will provide the destination size (x, y display size), a starting position for the display (in x, y coordinates) and a destination format indicator (YUV, RGB etc.) set with JPEG SET/GET.
The JPEG library calculates the ratio between source and destination picture size. The result of this calculation determines:
· Downsize strategy

· JPEG decode option (1:1, 1:2, 1:4 or 1:8)

· JPEG Resizer option

· Upscale strategy

· JPEG Resizer option

· Color format conversion

The JPEG decoder library supports progressive and baseline JPEG decoding. The supported source formats are encoded/compressed RGB and encoded/compressed YCbCr (also called YUV). The compressed YUV formats are 4:4:4, 4:2:2, 4:2:0 and 4:1:1, where it is assumed that sub sampled YUV are always centered pixel positioning.

The JPEG library exports functions to access the JPEG structure. These function calls are used to communicate with the JPEG library:

The JPEG decoder library supports JFIF, EXIF, PICT/JPEG and TIFF input file formats. It decodes whole picture or thumbnail, if thumbnail exists and is large enough. Library decodes slice by slice of an input image. It has built in resizer function which also works on slices. Resizer delivers scaled slices to output function which packs decoded and scaled data in desired output format.

Before writing pixels to the output/display it needs to be processed to match the target color space and resolution. Output picture processing includes color space conversion. Up and down conversions (4:2:2 -> 4:4:4) should already be done by the decode options and scale option. After conversion the data needs to be packaged for transmission to display.

In case of downsizing with a factor greater than 2, the DCT property (higher frequencies are stored in the latter coefficients of a scanned block) can be exploited by decoding only the coefficients necessary to form a smaller block.

Resizing function is realized according to two strategies – decode option and resize option. The decode option defines a decoding strategy for the decoding of an 8x8 block. In the normal mode the entire 8x8 block is decoded, downsize modes are 4x4 block (16/64 pixels are decoded), 2x2 block (4/64 pixels are decoded) or DC only (1/64 is decoded). The decode option will be used only if after it is performed image size is still higher of or equal to the desired (scaled) size on both dimensions (width and height). Decode option size is not the same for all color components in case of different YUV sampling factors in input image

The resize option is in fact resizing the remaining picture (after prescaling with the DCT-decode option) to generate exact dimensions of the final image that cannot be emitted only by decode option. Resize option works on the slice, not on the block. Due to small memory consumption resizer is limited to emit no more than 16 lines per call. This is needed in case of up scaling when memory consumption rises rapidly according to high scale factor. The resize function can be switched off and in that case only DCT scaling is performed.
Regarding speed up, first of all, C code optimization was performed. This includes reorganizing of the code by changing algorithm and execution but with no effect on decoded image. This is done having in mind HW architecture and its capabilities, especially usage of Scratch Pad RAM (SPR). Reading from this memory and writing to it has no additional delay cycles. Access to SPR costs only one cycle as an access to register. Of course, the most important was to hold the entire stack in the SPR. Beside stack, buffers which are constantly read and written are better to be allocated in SPR then in external memory. The only problem was that the SPR is limited up to 4 for banks of 4KB each and three of them were already used by MCM. Only one bank of 4KB was left for the JPEG decoder. Therefore, only the smallest and the frequently used buffers are chosen to be held in SPR. Regarding assembler level optimization, the functions that were the highest consumer of the processor time were written in the assembler. Those functions were IDCT functions (functions performing inverse discrete cosine transformation).
6. RESULTS

6.1. MEMORY CONSUMPTION

Especially inconvenient for this implementation of JPEG decoder library are images that are much wider than higher. Because of this, it is hard to define limitations for image dimensions that can be handled by the library. Memory consumption depends, also, on sampling factors for UV components of the input image because it defines an MCU (Minimal Coded Unit) size.

Usage of Scratch Pad RAM is different in cases of Resizer switched on or off. In the table 1 Scratch Pad usage is presented. When the resizer is switched on, the memory amount is constant and contains some tables and buffers used in decoding process. In the other case, when resizer is switched off, memory usage is appended with additional buffers used for upsampling or downsampling (worst case equals 1248 B). As it is shown in table 1 all tables and buffers fit in one bank of 4KB of Scratch Pad RAM. The stack is also placed on the Scratch Pad RAM but with usage of MCM wrapper and consumes.
	
	Starting address
	Resizer ON [B]
	Resizer OFF [B]

	
	
	
	(worst case)

	Scratch pad RAM usage
	0x30000000
	1984
	3232

Table 1 Scratch Pad RAM consumption

6.2. OVERALL MEMORY REQUIREMENTS
Results for overall memory requirements are obtained by compiling C code with GCC compiler. JPEG decoder library component consumes different amounts of memory for baseline and progressive JPEG compression modes. 3MB of data memory is required for 800x600 images in case of progressive mode. 105KB is an estimated data memory requirement for image of 2048 x 1024.

	component
	Program code memory [KB]
	Data memory [KB]
	Total memory allocation [KB]

	
	
	baseline
	progressive
	baseline
	progressive

	JPEG decoder library
	95
	105
	2810
	200
	2905

Table 2 JPEG Decoder Library Memory Consumption
6.3. PROFILING RESULTS
For speed profiling several tests were taken from the test vector used for verification. These tests were in range of dimensions from 0.3 to 6 mega pixels (see table 3).

	Test
	Dimensions
	TIME [ms]

	
	Pixels
	MP
	KB
	Resizer ON
	Resizer OFF

	1
	640x480
	0.3
	97
	1191
	1044

	2
	1024x768
	0.8
	160
	2071
	1170

	3
	1600x1200
	1.9
	687
	3172
	1992

	4
	2304x1728
	4
	955
	4919
	3475

	5
	2304x1728
	4
	754
	4542
	3146

	6
	2304x1728
	4
	680
	4440
	3006

	7
	2560x1920
	5
	1622
	6697
	4972

	8
	2560x1920
	5
	1521
	6344
	5220

	9
	3000x2000
	6
	188
	3171
	1218

	10
	3000x2010
	6
	828
	5330
	2690

Table 3 Profiling results with resizer on and off
6.4. VERIFICATION
Group of tests vectors were decoded with goal to verify the accuracy of JPEG decoder library ported on MDED platform (integrated in MICTOS) by comparing output files created by the referent JPEG decoder (PC version) and output files created by JPEG decoder ported on MDED platform. For all of the test vectors which were decoded with both software versions results had shown that the corresponding files were identical (bit exact).
7. CONCLUSION

In this paper it is presented one implentation of JPEG decoder on MDE9500D based platform with MIPS processor, used in digital television.. During the implemantation of the decoder low memory consumption was important task and it is achived regarding program code and data memory reduction. The processor time reduction for real time decoding fulfilled the requirements.

REFERENCES
[1] ITU, Information Technology – Digital Compression and Coding of Continuous-Tone Still Images –Requirements and Guidelines, CCITT T.81, 1993.
[2] Micronas, "MDE-D Software Documentation” 2004

85

