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AN ALGORITHM FOR OFF-NOMINAL FREQUENCY MEASUREMENTS IN ELECTRIC POWER SYSTEMS

Milenko B. Đurić, Željko R. Đurišić
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Abstract - Some power system protection applications require  accurate  estimates  of  voltage magnitude and frequency over a wide measurement  range.  Most  digital  techniques for measuring frequency have acceptable accuracy over a small range  in the neighborhood of the nominal value. This paper describes a new algorithm for measuring  the  frequency  in electric power systems. The algorithm is based on  the  least  error  squares  (LES) technique and uses digitized samples of voltage at a  relay  location. Mathematical development of the algorithm is presented and the effects of  key  parameters, that affect the performance of the algorithm, are  discussed.  The algorithm  proposed  is  the  improved  version  of  algorithms  developed  in References (2, 3, 4(. In this paper, the proposed algorithm is compared  with  the algorithms from these references. 

1.   INTRODUCTION

Frequency is an important operating parameter of a power system.  In  the steady state operation of a power system, the total power generated  is  equal to the system load plus the losses. During operation  under  such  conditions, the system frequency is constant. Generation-load mismatches cause the  system frequency to  deviate  from  its  nominal  value.  If  the  load  exceeds  the generation, the frequency decreases; if the generation exceeds the  load  plus the losses, the frequency increases. Underfrequency and  overfrequency  relays are used to detect these conditions and disconnect load blocks to restore  the frequency to its normal value and protect generators from overspeeding. 

 The algorithms developed (2, 3, 4( are modified here and  the  introductory analysis is omitted for the sake of brevity.  The authors  have  repeated  the calculations with the algorithms proposed in  the  references  cited  and  the results  obtained  match  the  cited  results  with  accuracy.  However, the algorithms appeared unreliable when applied to the power system networks where the voltage signal often appears as a distorted one, saturated with the higher harmonic components, ranging from third to eleventh order. When  the  original algorithms (2, 3, 4(  were tested on such a  signal,  even  the  small  content of higher harmonics, from 3 to 8 %, was the cause of the big errors. In  order to minimize the errors introduced by the presence  of  higher  harmonics  in the voltage signal, the utilization of the low-pass filters became necessary with these algorithms.

The basic idea of this paper is to modify the  voltage  signal  and  thus improve the performance of the filters used in the already existing algorithms (2, 3, 4(. The main purpose was to design the filter that could easily  adopt the arbitrarily shaped voltage signal occurring in real power system  network and make the new algorithm both sufficiently accurate and relatively simple. 

2. THE ALGORITHM

This section presents the algorithm which measures  the  frequency  of  a voltage signal. It assumes that the system frequency does  not  change  during the data window used for measurement. The algorithm  is  developed  using  the (LES) approach and uses digitized values of the voltage sampled at the 

relay location. 

 The slightly distorted voltage signal is acquainted in the  power  system steady state  operation  and  its  source  is  either  the  power  transformer operating on higher than rated voltages or AC/DC converters with thyristors. Let us  assume  the  following  observation  model  of  the  measured  signal, digitized at the relay location:
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The use of the well known trigonometric  identities  leads  to  the  following  equation 
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Where:

  v(t) -  is the instantaneous voltage at time t,

  V0  -  is the magnitude of the DC offset,

  M - is the highest order of the harmonic component  present  in         the signal,

  ( - is the fundamental radian frequency of the system in the         data window (it is assumed that the frequency  does  not         change during a data window used for measurement).

  Vk - is the peak value of the k-th harmonic component,

  Vrk =Vkcos(k and Vik=Vksin(k - are real and imaginary components of k-th harmonic component,

  ( = arctg(Vik/Vrk) - is the phase angle of the k-th harmonic component and

  e(t) -  is the zero mean random noise.

   The functions sin(k(t) and cos(k(t) can be expressed by their first three terms of the Taylor series expansions  in  the  neighborhood  of  the  nominal frequency (0  as
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and
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where ((=( -(0  is the radian frequency deviation.

     After retaining the first three terms of  (2)  and  (3)  for  fundamental harmonic and first two  terms  of  (2)  and  (3)  for  higher  harmonics,  the substitution into (1) yields: 
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Equation (4) can be rewritten in the abbreviated form as
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Where:  
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If the signal v(t) is uniformly sampled with the frequency rate  fs=1/T Hz during a finite period  of  time  (called  data  window),  one  can  define  a measurement window [v] as a set of m consecutive samples  (m>4M+3).  This set determines m linear equations in 4M+3 unknowns  and  can  be  written  in  the following matrix form:
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is  an  (m(1)  measurement vector, 
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a

-an (m((4M+3)) coefficient matrix, with the  elements  defined  by  equations  (6)  or (8) (in (8) the time is discretized –  t = nT):
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 is an (4M+3)(1 state vector, with the elements defined by equation  (6)  and 
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 is an eror vector, to be minimized.

The elements of matrix 
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 depend on the time reference t  and  the  sampling rate, and T can be preselected in an off-line mode. Also, all the elements  of
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  are unknown and functions of Vrk, Vik, (, (0  and V0. To determine the (4M+3) unknowns of equation (7), at least (4M+3) equations must  be  established.  In other words, at least (4M+3) samples of voltage would be required.  As a general case, we assume that (m) samples are available, where (m)>4M+3; then equation (7) describes an overdetermined system. The (LES)  technique  is used to solve this equation. A complete description of this algorithm is given in (2,3 and 4(. Applying the LES technique on (7) the following result is obtained:
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where the matrix 
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 is the left pseudoinverse  of  matrix  
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  is  the optimal or best (LES) estimate of 
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Having the state vector 
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x

, the magnitude of the DC offset,  amplitudes  of harmonic components and fundamental radian frequency of the voltage signal can be estimated as
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    Equation (9b) is not suitable when Vrk  is small and equation  (9c)  is  not suitable when Vik  is small. A suitable strategy is to use equation (9d) as the frequency deviation estimatiom proceeds  and  either  equation  (9b)  or  (9c) for the frequency deviation sign determination.

     Equation (7) is valid generally, for the signal model containing  the  DC component and the first (M) higher harmonic components. For  example,  if  the voltage signal model contains the first M=11 harmonic components  and  the  DC component, the number of unknowns in 
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 yields 4M+3=4(11+3=47. Solving (7) even now does not impose a problem. Practical cases introduce even  smaller  number 

of unknowns. If a frequency relay with the main task of measuring frequency in steady state and quasi steady state operation is installed in a  power  system network, the even harmonics in voltage signal are not existing. In this  case, if the voltage signal contains all odd harmonics to the  eleventh  order,  the number of unknowns in 
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 is        4Modd +3=4(6+3=27.

3. IMPROVEMENT OF THE ALGORITHM

      PRESENTED

Unknown parameters of the signal model are estimated by means  of  (9a-d). It has been shown in [2, 3, 4]  that  the  performances  of  the  algorithm  are determined by the choise of the data window size Tdw, the sampling  frequency fs and the level of the truncation of the  Taylor  series  expansions  of  non linear terms. The accuracy  of  the  estimation  was  fully  affected  by  the actually measured value of the signal frequency.  The  required  accuracy  was reached only in a narrow range of the expected frequency. The  model  was  not capable of providing a precise measurement over a wide frequency range, as  it is shown in the algorithm testing. 

     Since the algorithm accuracy has been mainly affected by  the  previously selected expected frequency (equal to the  system  nominal  frequency:  50 or 60 Hz), i.e., by the off-line calculated pseudo-inverse matrix [A], the  authors drew the conclusion to iteratively update the matrix [A] in accordance with  the actually estimated frequency deviation. In other words, the  model  lienearized in the neighborhood of one point, in the next iteration is linearized  in  the neighborhood of the new point, calculated  as  a  function  of  the  frequency estimated in the previous iteration.  In  the  context  discussed  above,  the estimation in the p-th iteration could be expressed as:

[xp]=[Ap((p-1)][vp]                          (10)

where  (p-1 is  the  frequency  estimated  in  the  previous, the  (p-1)-st, iteration. Using the estimated state  vector [xp] and  equations  (9a-e),  one readily obtains the estimates of all unknown signal parameters. On  the  basic of the frequency deviation estimated, follows the update of the [A] and the  new estimation in the step (p+1), i.e.:

                              [xp+1]=[Ap+1((p)][vp+1]                      (11)               

where an update is provided by:
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   Thus, the algoirithm for the voltage or current signal parameter estimation can be now subdivided into the following steps:

1. The initial point (0 selection.

2. Signal samples block [vp] acquisition.

3. Pseudo-inverse  matrix [Ap((p-1)]  and  optimal  estimation [xp]=[Ap((p-1)][vp] calculation.

4. Unknown parameter calculation, on the basis of the state vector [xp] .

5. Linearization point update (p = (p-1+((p.

6.    Index increment p= p+1 and go to step 2.

    At this stage, useful observations about the algorithm stated are made:

1. The range of the measurement and the accuracy are significantly improved.

2. Matrih [A] now is time dependent and the computational dured is incresed.

3. This agorithm could be applied for a different kind of  applications,  like load-shedding,  load  restoration,  power  system  protection,  power   system control, etc.

4. Since the signal model was established in the  extended  form,  a  low-pass filter is now not required.

4.   THE PROPOSED ALGORITHM TESTING

A pure sinusoidal test signal with the following frequency dependence  was generated:
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and processed with the algorithm without iterative procedure [2]. The accurate estimates were obtained only in a very narrow frequency  range  (( 0.25 Hz). Such a narrow measurement  range  would  not  satisfy  the  frequency  relayng requirements.

     The necessity of the model extension was  confirmed  by  processing  test signals distored  by  the  higher  harmonics  with  "the  one-sinusoid  model" assumed. The maximum estimation errors  that  occurred  when  3.,  5.,  or  7. harmonic (separately) in the amount pf 0.1 p.u. was superimposed were 0.23, 0.1 and 0.08 Hz respectively. Such an inaccuracy should not be accepted  from  the point of view of underfrequency relaying.

    In the following test, the generated test signal, provided as an input  to the algorithm, has the following description in harmonic domain:

fundamental harmonic 100%, 

the 7-th harmonic 20%, 

the 11-th harmonic  10%  and 

DC offset 10%.

   Using sampling frequency fs =1000 Hz and data window size Tdw= 0.04 s the exact fundamental frequency estimates are obtained after few  iterative  steps.  The accuracy of the estimates is independent of the number of harmonics and  their magnitudes.

    .

In the following test, the recorded real voltage signal (Fig.1), provided as an input  to  the  algorithm,  was  used.  The  result  of  the  frequency estimation  with  the  sampling  frequency  fs =1600 Hz  and  data  window  size Tdw = 0.1 s is shown in Fig. 2. Exact value of the recorded  voltage  signal frequency was 49,927 Hz. It is evident that acceptable accurracy was  reached  using  proposed algorithm.

5. CONCLUSION

This paper describes iterative digital signal  processing  algorithm  for  the frequency estimation of the distored  signals.  The  algorithm  is  tested  by computer simulations and by processing experimentall obtained data records. It seem to be a very useful tool in the  various  aspects  of  power  engineering applications, e.g. computer relaying,  real-time  monitoring  and  control  of system dynamics.
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Figure 1. Recorded voltage signal























� EMBED Word.Picture.8  ���Figure 2. Frequency estimates of recorded signal
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