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IDENTIFIKACIJA SISTEMA SA TANDEM SA ADAPTIVNIM FILTROM

System Identification with tandem SA Adaptive Filter(
Božo Krstajić, LJubiša Stanković, Zdravko Uskoković, Elektrotehnički fakultet u Podgorici

Sadržaj - U ovom radu je prezentiran jedan način identifikacije nepoznatog sistema pomoću adaptivnog FIR filtera sa Sign algoritmima (SA) u tandemu. Tandem SA adaptivni filter se sastoji od više paralelno vezanih SA filtera sa različitim koracima adaptacije i algoritma za izbor boljeg u smislu srednje kvadratne devijacije vektora težinskih koeficijenata. Kao kriterijum za uporedjenje dva SA algoritma sa različitim koracima, uzeli smo odnos između bias i varijanse te¸inskih koeficijenata. Prezentirani rezultati identifikacije nepoznatog sistema su simulirana na sistemu sa promenljivim parametrima.

Abstract - In this paper, we present a one way to identification of unknown system by adaptive FIR filters with the tandem sign algorithm (SA). Tandem SA adaptive filter consists of parallel SA filters with different step sizes, and an algorithm for choosing the better of them with respect to the mean square deviation. As a criterion for comparison of the two SA algorithms with different step sizes, we take the ratio between the weighting coefficients bias and variance. Presented results is obtained for nonstationary environments in a system identification setup

1. Introduction

Identification of an unknown system attracts a lot of research interest, especially in the problems of control, signal processing and communications. The identification problem becomes harder to solve when a considerable white noise is present  and when the system parameters vary. One of the most efficient ways of dealing with these types of problems is by using the adaptive identification systems.


The basic principles of a parametric model identification by using an adaptive system are studied in [1, 2, 3]. Figure 1. shows a basic setup for unknown system identification in the presence of a Gaussian noise.


A system is identified if the coefficients of its impulse response are determined. In the adaptation process, the weighting coefficients of an adaptive filter converge towards the coefficients of an unknown system impulse response. These papers deal with identification of an unknown system without the Gaussian noise (v(k)). In most practical problems, however, noise is actually present and corrupts the reference signal (d(k)). The  problem further complicates if in the identification procedure the system parameters rapidly change their values.
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Fig. 1: Adaptive system for parametric identification of an unknown system


One of the most commonly used adaptive algorithms in adaptive filters is the Least Mean Square (LMS) algorithm and its modifications. 
In high speed data communication, the symbol intervals may not be long enough to execute an iteration of the standard LMS algorithm. This makes multiplication-free variants of the LMS algorithm very convenient for these applications. Among these variants is the sign algorithm (SA) [1,2,3,4], which is given by:
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where: 
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 is the vector of weighting coefficients of the adaptive filter at an instant k, 
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 is the input signal vector, μ is the step size value and  
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is the output error signal.

    The considered unknown system identification problem consists in trying to adjust a set of weighting coefficients of adaptive filter, so that the system output tracks a reference signal, assumed to be of the form:
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 where n(k) is a zero-mean Gaussian independent noise with variance 
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 is the optimal weighting vector or impulse response of unknown system (Wiener vector).

    The unknown system parameters 
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is time variant. It is often assumed that variation of the optimal vector may be modelled as:
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where 
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 denotes the independent zero-mean random perturbation with autocorrelation matrix Q =
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    Let us define the instantaneous weighting vector deviation from the optimal vector as 
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. An important performance measure for the adaptive filters is its steady state mean square weight deviation (MSD). For the adaptive filters with SA in nonstationary environment, with standard assumptations as in [2, 3] the MSD is given by:
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where R is the autocorrelation matrix of the input signal vector.

    The MSD consists of two terms. The first one, directly proportional to the algorithm step size μ, is a consequence of the gradient noise. The second term, inversely proportional to μ, stems from the optimal filter variations, (3).

    As we know, the step size μ in the SA controls the convergence rate of the adaptive process, and also determines the final steady-state performance. As shown in [3], from (4) it is possible to obtain the algorithm step size that minimizes the value of the MSD, called the optimal step size:
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    The above relation is not of much use in practical applications, since it requires availability of data concerning optimal filter variations (3), as well as of the input signal autocorrelation matrix.

    Note that for the optimal step size (5), parts of the MSD (4) have equal values, i.e. the influence of the gradient noise is the same as the influence of optimal vector variance. In the analysis that follows, we take this fact as the criterion for choosing the better SA adaptive algorithm

2. Comparison of SA with Different Step Sizes
    Basic idea of a combined adaptive system lies in parallel and independent adaptation of two or more adaptive Sign algorithms with different step size (Tandem SA filter), [6, 7]. Choice of the best algorithm, in each iteration, reduces to the choice of the best value for the weighting coefficient, taken from the set of values used in the procedure of parallel adaptation with several Sign algorithms. The best weighting coefficient is the one that is, at a given instant, the closest to the corresponding value of the Wiener vector, i.e. which has the step size value closest to the optimal step size (5). Let us first analyse a tandem SA with several Sign algorithms.

    The instantaneous weighting vector deviation for the i-th weighting coefficient can be written as a sum of the difference between the average and the optimal value and the coefficient variations around the average value, i.e.:
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where 
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 is the weighting coefficient bias and 
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 is a zero-mean random variable with the variance σ². The variance depends on both the step size of SA and on the external noise variance 
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.Thus, if the noise variance is constant or slowly-varying, σ² is time invariant for a particular SA. In that sense, in the analysis that follows we will assume that σ² depends only on the SA step size. For simplicity of presentation, time varying quantities bias will, in the sequel, be denoted by 
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. Bias characterizes transient processes of weighting coefficients adaptation in an adaptive filter, and is a direct consequence of the abrupt changes in system parameters (i.e. the corresponding optimal values). Variance dominates the steady-state of weighting coefficients adaptation in an adaptive filter, and it is caused by the presence of gradient noise and other noises in an adaptive filter. Thus, in the transient adaptation process, with weighting coefficients being far from the optimal values, bias dominates over variance, while it becomes negligible with respect to the variance after the end of adaptation transient process.

    Criterion for choosing the best weighting coefficient value is based on comparing the values of weighting coefficients' bias and variance for each of the parallel algorithms. The weighting coefficients 
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, with the bias and the variance. These two quantities are related as [6, 7, 8]:
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The above inequality holds with a probability P(κ), depending on the value of parameter κ. For example, with κ=2 and a Gaussian distribution of random variable 
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, inequality (7) is satisfied with 95%, since the probability P(2) that a random variable is inside the interval ±2σi, around the mean value, is 0.95 (two sigma rule in probability theory).

    Let us now define the confidence intervals for random variables 
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where Δκ is the parameter which takes into account the bias of 
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. Then, from (7) and (8) we can conclude that, as long as the bias is small, i.e. |
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, independently on step size of the SA. It means that, for small bias, the confidence intervals (8) for different SA intersect. When, on the other hand, the bias becomes large, then the central positions of the intervals for different SA are far apart, and they do not intersect.

    Since we do not have apriori information about the 
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, we will use a specific statistical approach [6, 7]. Taking, as a criterion for the trade-off between the bias and variance, the condition that the bias and variance are of the same order of magnitude [6, 7, 8], i.e.,
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we get the criterion for the choice of SA.

    The analysis of the MSD from previous section indicates that the best ratio of gradient noise and optimal filter variation in the steady state is their equality. Thus, Δκ=1 should be used in our application. This criterion is in accord with the analytical development for the optimal step size, (5).

    Let us suppose now that the Sign algorithms have different step sizes, taking their values from previously defined finite set M, whose elements are constrained with the convergence condition of SA [1, 2]. Based on them, introduce a new notation for the i-th weighting coefficient calculated for the particular step size 
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    Choosing the best one among several SA proceeds as follows. We first check if the confidence intervals for various Sign algorithms, with different values of step sizes 
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, intersect. We start from the SA with largest values of step size and proceed towards the SA with smaller values. The check is performed according to the following inequality:
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(10)
If the relation (10) is satisfied, the confidence intervals intersect. It means that the bias is already small (corresponding to the steady state) so we should choose the algorithms with the smallest variance (smaller step size). The first two confidence intervals which do not intersect will mean that the proposed trade-off (9) between the bias and variance is achieved, and we choose the algorithm with smaller variance. If none of the intervals intersect (bias is large) we choose the SA with the smallest bias, i.e. with the large step size.

    In order to compare various SA in this way, one should have the value of the algorithm weighting coefficients variance, or their estimate. This could be done in various ways. Here we present the two estimation approaches that we have used.

    In the first one we estimate the value of the weighting coefficients variance in the steady state. By using (4), we take the value of the variance 
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, for the SA with the step size μ, to be equal to the variance value in the steady state, i.e. according to the relations (4) and (6):
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The value of noise power 
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 we either know in advance, estimate or measure. In our simulations we have estimated the noise power by calculating the value of mean squared error e(k) in a limited number of initial iterations, in the absence of the input signal x(k):
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The alternative way is the direct estimate of the weighting coefficients variance 
[image: image41.wmf]2

m

s

 at the beginning of the adaptive procedure, as in [6, 7, 8],
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for 
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. Note that this estimate, in contrast to (12), does not require that the input signal is zero-valued. The above relation produces good estimates for all stationary cases, as well as for nonstationary cases, including abrupt coefficient changes.

3. SA Adaptive FilterS in tandem
    Based on the analysis from previous section, we here propose an adaptive system composed of several parallel connected SA algorithms, with the purpose of improving identification of an unknown system in stationary and nonstationary environment, [8]. As it may be observed from Fig. 2., we use several parallel SA algorithms with different step sizes and, compare the weighting coefficient values and, according to (10), we choose the best one in each iteration.


Since SA algorithms are in parallel, this scheme does not require additional processor time, but is does require some additional hardware resources. Also, if the weighting coefficients variance is estimated, the algorithm for choosing better weighting coefficient does not require any additional multiplication, but only N subtractions and at the most N(P-1) comparisons per iteration, where P is the number of parallel connected SA adaptive filters and N is the filter order. This way, the basic advantage of the SA adaptive filters, their speed, is not lost.
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Fig.2. SA Adaptive Filters in Tandem


The number of required SA adaptive filters in tandem depends on the nature of adaptive problem as well as on the requirements with respect to the MSD decrease. According to the analysis from previous section, large number of SA adaptive filters will drive the MSD closer to its minimal value, but it will also increase the need for hardware resources and cause processing delays. A reasonable trade-off is one SA algorithm with the maximal step size, one with the minimal step size, and at least one SA algorithm with the step size between these two extremes.

4. Simulation Results

Here we have considered a computer-simulated identification of an unknown system; for the clarity of presentation we took the fourth order system. The performance of the proposed system is compared with each of the individual SA algorithms in tandem. In simulation presented here, the reference signal d(k) is corrupted by a zero-mean uncorrelated Gaussian noise with variance 
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=0.02 and SNR=17 dB. Results are obtained by averaging over 500 independent runs.

    As it may be observed from the presented results, in the first 30 iterations the noise power was estimated according to the proposed solution and the relation (12). In our simulation, we take three SA adaptive filters in tandem. This is shown to be quite enough for achieving satisfactory performance. In the presented illustrative example we employed the SA with the step size values set M={μ, μ/2, μ/8}, and μ=0.2. The value of parameter κ was κ=2.

    The unknown system has four time-varying coefficients, and the FIR adaptive filters are of the same order, i.e. N=4. The optimal weighting vector is generated according to the random walk model in (3) with 
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=0.001. However, we consider a more complex case with an additional abrupt change of optimal weighting vector. The abrupt change is generated by multiplying all the system coefficients by -1 at the very middle of the adaptive procedure

    Figure 3 shows the MSE characteristics for each considered algorithm. In order to clearly compare the obtained results, for each simulation we calculated the average MSE (MSEa). For the SA1(μ) it was MSEa=0,59655, for the SA2(μ/2) it was MSEa=0,58629, for the SA3(μ/8) it was MSEa=1,94389 and for the Combined SA it was MSEa=0,41023.
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Fig.3. The MSE characteristics for each considered algorithm
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Fig. 4. The MSD characteristics for each considered algorithm


Figure 4 shows the MSD characteristics for each considered algorithm. In order to clearly compare the obtained results, for each simulation we calculated the average MSD (MSDa). For the SA1 (μ) it was MSDa=0,52342, for the SA2 (μ/2) it was MSDa=0,53128, for the SA3 (μ/8) it was MSDa=1,82027 and for the Combined SA it was MSDa=0.35674.

5. CONCLUSION


Simulation results confirm the presented analytical development and justify the use the tandem of several adaptive SA in the general case and in the particular problem of system identification. In the proposed adaptive system the criterion for choosing among several SA adaptive filters in tandem is based on the equality of bias and variance of the weighting coefficients. As the simulation results clearly demonstrate, the SA algorithms with great step size behaves fairly well in tracking rapid variations of the system parameters, but with considerably greater variance of the weighting coefficients in the steady state. On the other hand, the SA algorithms with small step size exhibit small weighting coefficients variance, but are slower in tracking rapid variations of the system parameters. Use of the proposed combination of these algorithms results in an adaptive system that takes the favourable properties of consider algorithms.

 REFERENCES

(1(
P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, Kluwer Academic Publishers, Norwell, 1999.

(2( V. J. Mathews and S. H. Cho: "Improved Convergence Analysis of Stochastic Gradient Adaptive Filters Using the Sign Algorithm", IEEE Trans. Acoust. Speech and Signal Processing, vol. ASSP-35, No. 4, pp. 450-454 April 1987.

(3( E. Eweda, "Comparison of RLS, LMS and Sign Algorithm for Tracking Randomly Time-Varying Channels", IEEE Trans. Signal Processing, vol. 42, No. 11, pp. 2937-2944, November 1994.

(4(
N. R. Yousef and A. H. Sayed "A Unified Approach to the Steady-State and Tracking Analyses of Adaptive Filters", IEEE Trans. on Signal Processing, vol. 49, No. 2, pp. 314-324, Feb. 2001

(5(: K. C. Ho, "A Study of Two Adaptive Filters in Tandem", IEEE Trans. on Signal Processing vol. 48, No. 6, pp. 1626-1636, June 2000

(6( B. Krstajić, LJ. Stanković, Z. Uskoković, I. Djurović: "Combined adaptive system for identification of unknown systems with varying parameters in a noisy environment", Proc. IEEE ICECS'99, Phafos, Cyprus, Sept. 1999.

(7( B. Krstajić, Z. Uskoković, LJ. Stanković, "Identification of unknown systems with varying parameters in a noisy environment with a new VS LMS algorithm", MED’01, Conf. Proc., Dubrovnik, Croatia, June 2001.

(8( B. Krstajić, Z. Uskoković, LJ. Stanković, " Kombinovani SA adaptivni filter ", IT2002, Zbornik str. 181 – 184, Žabljak, Mart 2002.































( This work is supported by the Volkswagen Stiftung, Federal Republic of Germany.





PAGE  
59

_1074594879.unknown

_1074597111.unknown

_1074597355.unknown

_1074597446.unknown

_1074597992.unknown

_1074622408.unknown

_1078251658.unknown

_1074621375.unknown

_1074597500.unknown

_1074597807.unknown

_1074597417.unknown

_1074597146.unknown

_1074597233.unknown

_1074597122.unknown

_1074596230.unknown

_1074596720.unknown

_1074597074.unknown

_1074596571.unknown

_1074596606.unknown

_1074596386.unknown

_1074596242.unknown

_1074594996.unknown

_1074595408.unknown

_1074596217.unknown

_1074594890.unknown

_1074594193.unknown

_1074594681.unknown

_1074594707.unknown

_1074594640.unknown

_1003780570.unknown

_1074102327.unknown

_1074102404.unknown

_1074449958.unknown

_1073758807.unknown

_1002092625.doc


x(k)







SYSTEM







ADAPTIVE







UNKNOWN 







FILTER







d(k)







y(k)







e(k)







v(k)












